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Abstract

Simultaneous photographs are taken, of the same aerial point, by
two cameras on the ground. Stars also are photographed, on some or all

- of the plates. Here the mathematical procedure is developed and described

- for finding accurately the position of the aerial point with respect to
- a set of terrestrial axes, ¢

' to expedite the numerical calculations as much as possible, consistently

s n » and ¢ . The formulae are designed

with an accuracy of the order of a second of arcjy i.e., of better than a

: foot at 50,000 feet. Another less accurate procedure is also described

that does not involve star-images on &ll of the plates, The present dis-
cussion is applicable to the case where both cemers axes are vertical.

Some of the formulae are applicable also to oblique camera axes, - T E

P

i

1. Introduction. In order to obtain the fundamental
data from which bomb ballistic tables can be prepared, it
is necessary to know the position and velocity of an airplane
at the instant when it releases a bomb. Both the position
and velocity ¢an be deternined from a knowledge of the posi-.
tion of the airplane at each of several known times and from
a knowledge of the time of releese. Nearly instantaneous
light signels can be emitted from the airplane at known
times, and each of these signals can be photogravhed by two
cameras mounted rigidly on terrestrisl pilers. The problem
with which we are here concerned is the determination of the
position in space of each of these light signals, from the
information vrovided b{gﬁuch photographs.
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{” - The position of an aerial point is determined when
Ar;) its directions from both cameras are known. In order to be

' of use in range bombings from great altitudes, these direc-
ticns must be found to a very high accuracy. The most accu-
rate, and yet not prohibitively laborious or lengthy pro-
cedure is to photograph known "comparison" stars on the same
plates that photograph the aerial points. Then, by adapting
to the present problem the simple, mechanical, and yet ex-
ceedingly accurate methods of photographic astrometry, one
can find the directions of the rays to the aerial points
from a knowledge of the positions of the comparison stars,
accurately listed in star catalogues. The x and y coordi-
nates, of the images of the stars and of the aerial points

on the photographic plates, must be measured on a measuring
engine. The star-images determine a set of "plate cdnstantsr",
and the plate constants in turn determine the direction
ratios to the aerial points. It is not necessary for the
ways of the engine to be exactly nerpendicular to each other
or parallel to the edges of the plate; it is not necessary
for the scales of the messuring engine, in x and y, to be the
samey; no fiducial marks are necessary cn the plates; the
focal lengths of the cameras need not be sccurately known;
and errors in the assumed orientations of the csmeras pro-
duce only second-order errors in the resulting directions

to the aerial points.

K ' : An alternative and less accurate procedure is to
it determine the plate constants on some plates from the star- -
- images, and to find the directions of the rays to an aerial-
point on other plates by employing fiducial marks impressed

upon the plates by the camera. The alternative procedure
obviates the need for employing star-images on all the
plates, but presumes a very high degree of fixity and per< °
manence in the mountings and orientations of .the cameras.

Here we develop and present the necessary formulae,
many of which are mere adaptations of the well-known formulae
of photographic astrometry. Astrometry, however, concerns
the relative directions of stars with respect to each otheér;
in the present problem we have slso to find directions rela-
tive to the surface of the earth. The present problem, there-
fore, has some new aspects. Further, it is desireble to
simplify some of the conventional astrometric formulese with a
view to accelerating routine computation, to diminishing the
frequency of errors of computation, and to facilitating the
checking of the various stages of the reductions. To avoid
errors arising from the entering of. tables incorrectly, an
~effort will be made to aveid the use of trigonometric func-
tions, by using direction cosines instead. After some pre-
liminary transformations have been made to direction cosines,
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no further use will be made of trigonometric functions. It
is believed that the new forms into which some of the old
astrometric formulae have been recast may be useful outside
of the present problem in astrometry.

The use of two terrestrial cameras was urged by
Professor Henry Norris Russell, to whom the writer is grate-
ful also for his valuable and specific suggestions. Among
them were the finding of lens-distortion by examining the
residuals, of a least squares solution for plate constants.
He also pointed out that whenever the "base" of a plate
is the zenith, then the direction cosines in the altitude-
azimuth system, to any point, can be found at once from
its standard coordinates. .

We take up the problem in the order in which the
computations should be made. We discuss first the reduction
of mean star positions, found from a star-catalogue, to
apparent positions. Here the most expeditious procedure,
since standard coordinates must be computed, is to compute
direction cosines at once and then correct the direction
cosines, rather than the right ascensions and declinations,

- for precession since the beginning of the year, for nutation,

and for aberration. Then standard coordinates are to be
computed, to be corrected for lens-distortion and third-order

terms in refraction. Then the plate constants are found, znd
from them and the plate-coordinates of the aerizl point one - .. .-

computes the direction ratios of the rays to the aerial-

point. From these (corrected for refraction and distortio Y

the terrestrial coordinates of the aerial point follow at® .-~

N In subsequent sections we show how to follow the
alternative procedure that does not use star-places on all
the plates. : : ’ ' '

Equations to be used by computers are numbered with
Roman, other eguations with Arabic, numbers.

2.  The Reduction of the Star-Places. Reduce the cata-
logue mean positions of the stars to the beginning of the
current year, by applying the annual and secular variations
(which include proper motion) listed in the catalogue. Apply
also the proper motion, if it amounts to more than O".1 (or
0%.01) from the beginning of the year to date, and apply
further the small diurnal aberration. The equations are




o= o+ O+ 24’ 4 08,02

° 200 _ _ ,
L (1)
=06 + 6{,-;_&5.-; "L" ‘
o 200 "
s _
where

u;u' are the annual proper motlons in rlght ascension
and declination, :

o,d are the right ascension and declination, for the
mean eqguinox of the beginning of the current year,
and epoch of date, affected by zenithal dlurnal
aberration,

%V6° - are the catalogue right ascension and decllnatlon
(for the mean equinox of the catalogue)

!

a,d are the catalogue annual variations,

" n

o, are the secular variations in right ascension and
declination, .

t ) is the number of whole years elapsed since the
epoch of the catalogue,
t! is the fraction of the current year elapsed,

and,

0°.02 is the zenithal diurnal aberration.

NOTE: The symbols t and j, will be used 1ater in different
senses.

It will be noted that t and t%/200, as well as t', are the
same for all the stars used and may be computed once and for
all for any date. The above reductions are, therefore, very
rapidly performed if %, 1%®/200, and t' be entered on a slip
of paper. If the Boss General Catalogue is used, t for 1942
is, of course, -8, and t*/200 is +0.32. The terms in t' are
usually ignorable.
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A word of explanation is reguired about the diurnal
aberration. Its effect upon the apparent position is

0".51 cos @ cos T sec O. ‘
a6 : N (?)

.0".51 cos @ sin T sin &

n._n

where T is the hour-angle and ¢ the latitude. It can thus
never exceed 0O",.31 in absolute amount, in either right
ascension or in declination. With vertical cameras the
stars photographed will be close to the zenith -- with the
Goerz cazeras, within 20° of it. At the zenith - ‘

-

de = 0°.021, ds = 0.

It follows from equations (2) that at Aberdeen Proving Ground,

the diurnal aberration 20° from the zenith can differ from
its zenithal value by no more than O",16. Thus the equations
(I) allow correctly for diurnal aberration to within this
high accuracy.

Compute eguatorial direction cosines, Lo, MO, No’
for each star by the formulae '

: Lo = ¢cosd cose
M, = cosd sina . , (I11)
N = sind.

o

It will be noticed that these cosines relate to the mean

“equator and equinox of the beginning of the current year, and

contain the diurnal aberration, and the proper motion since
the beginning of the year. These cosines will thus never
need to be computed more than once in each year, except,
rarely, in the case of large proper motions.

It is next necessary to correct these cosines for
precession since the beginning of the year, for nutation, and
for annual aberration. This correction is most readily
carried out by the formulae :
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L = L, + AL |
M=M, o+ MM - (1)
N =N, +oN

where the corrections AL, AM, and AN are given by the formulae

P = DL, ~ CM, -~1NO |
10,000 AL = PL, - FM_ - AN, - D -

110,000 AM = FL, + PM_ + BN, + C

10,000 AN = AL - BM_ + PN + 1

In these equations the coefficients A, B, C, D F, and i de-
pend only on the date, and should be tabulated to an accuracy
of 0.001 for convenient reference in the use of the present
formulae, They are defined by

i

0.04848 B,
0.04848 C

0.04848 D
= 0.72722 (£, + f1)
0.04848 1 3

H

0.9717 Ay from 1937 through 1960, and,

i

T e T s
|

0.9716 A, from 1961 through 1985,

where the symbols Ag, Bg, Cgoy Dgy fg 7o and 1 denote the
gquantities that are llsted 1n the Amerlcen themeris and
Nautical Almsnac, for each day in the year, in the section
dealing with star reductions, under the names mA", n"BRUM, nCw,
upn, nfu . nfin. and "ir without the subscript "e". These
guantities are all in seconds of arc with the exception of 4 _,
a pure number, and fg and f'y which are in seconds of time.

A, B, C, D, in the notation of the Almenac are Besselian star
numbers; f, ', and i are Independent star numbers.




The equations (IV) and (V) have been derived merely
by writing down the first derivatives of L, M, and N with
respect to o and §, and employing the formulae for dg and
dd that are listed on page 222 of the American Evhemeris and
Nauticzl Almanac for 1938 under the title "Independent Star

Numbers". The terms in the proper motion can be dropped from
the latter formulae since proper motion has been already
allowed for. TFormulae (IV) and (V) follow after some algebraic
reductions, which the reader can readily verify. The second-
order terms in AL, AM, and AN are of the order of only
0.0000001, or 0Ov,02, and have been here ignored.

In using equations (V), it is sufficient to know
the coefficients only to the nearest 0.001 and to use approxl-
mate values of Lg, Mg, and No rounded off to the nearest
0.001. Tnen AL, AM, and AN will be accurate to the nearest
0.0000001, which is sufficient. It is a good plan to retain
seven digits in Lo, Mo, No, L, M, and N and throughout the
subsecuent stages, except where otherwise specified in
following sections. We have already pointed out that the
cosines Lo, Mg, No can be computed once and for gll for a
whole year of observation except in the rare cases of stars
of large proper motion. Likewise, L, M, N will stey effec-
tively constant on any one night and will vary only slightly
from one night to the next. :

The computation of L, M, N can be checked by
verifying that the sum of their scuares is unity, and this
check should previously have been applied to Lg, Mo, and Npe.

3. Standard Coordinates. Denote by v the sidereal
time of the photograpn of the star-imzges. This time will
differ for the two cameras even if they are exposed simul-
taneously, unless they lie on the same meridian of longitudes
denote by 1, m, n the direction cosines of a star referred
to the axes of the hour-sngle declination system. Denote the
ordinary equatorial system of axes by x", y", z" with the x"
towards the eguinox, and z" towards the north pole of the sky.
Denote the hour-angle declination system of axes by x', y', z!',
with x' pointing towards the intersection of the ecuator w1th
the observert!s meridian, and with the z!' axis continuing to
point to the north pole. The primed system of axes is obtained
byﬂrigating the unprimed system 0051t1vely ti rough the anglet
and us

>
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= L, cost + M sin ¢

m=1L sint + M cos 7T ' ' (V1)

n=N~N

The factors cos T and sin T must be looked up, snd then all
the stars that one is using must have their old cosines,

L, M, and ¥ transformed by the equations (VI) into the new
0051nes 1, m, n. The new cosines may be checked by veri-
fying that the sum of squares is unity, and are thus
rapidly computed and verified.

. It is important (if one is using the American
Ephemeris and Nautical Almanac for computing the sideresl
time from the standard time) that the true sideresl time,
including terms of short period in the nutation, must be
used and not the uniform siderezal time. The %“sidereal
time of OB listed in the Almenac may be used properly for
the conversion; but not the "civil time of sidereal 04", in
which short-period terms have been ignored.

By the base of & ohotograohlc plate, we mean the
image on the plate of the infinitely distant point who
reys enter the camera perpendicularly to the plate. W1th
a horizontal plate, the base is the image of the camerals
zenith, of which the hour-sngle is zero and of which the
declination is ecual to the latitude, ¢, of the camera.
We are here concerned with a horizontal plate, whose base
is the zenithj; in the next section we shall discuss the
magnitude of the errors in direction that can result from
errors in levelling, the former errors being much smaller
than the latter.

Consider a set of axes 0X, 0Y, 0Z with OX parallel
to the yt axis, OZ towards the camera's zenith, and OY in
the plane Z0z' and, therefore, in the terrestrial north
direction. Consider a plane Z = XK where X is some constant.
The X and Y coordinates of the intersection of this plane
(called the "standard coordinate plane") with a ray 0Q are
said to be the "standard coordinates" corresponding to the
direction 0Q. " Let the direction cosines of 0¢ in the x', v',
z! system be 1, m, n. The cosines of the angles between
the axes of the two systems of coordinates are

X ¥ Z
x! 0 -sin ¢ cos ¢
y! 1 0 0
zt 0 cos @ sin ¢
-8~
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A Thus the direction cosines of 0Q in the X, Y, Z system are

m, ~1sing+ncosep, ~-1lcosop+mnsing

and the intersections desired are Z = 1, and,

v m
X=K ——p——o
Bl Tyn
' (VII)
y:Kﬁ.}l_:.l.J;
Bl "yn
‘.where B = cos », Yy = sin 9. The fectors B and vy are

mere constants dependent only on the latitude of the camera,
and thus the equations (VII) allow the standard coordinates,

X and Y, of any star to be readily computed. For tne Goersz
cameras the greatest angulazr departure from the 02 axis is
about 20°, and it is, therefore, suggested that the constant
K be set egual to 10 in order not to have too small X's and
Yts. Equation (VII') may be used to check the computation

of X and Y: , ' -

X? + Y® + K® = Kz’/({n + yn)Z2. (vITY)

The equations (VII) may also be derived from those of
Turner* or Schlesinger#*%*, who employ a different notation, if
one transforms to direction cosines after inserting in their
formulae a base whose declination equals the latitude, and
whose right ascension is equal to that of the zenith.

T Iurnef.,ﬂ&niﬁ13.1211&&;_nggl.A&LLangmicaiuinaiziy, V54, 2}, 1883,

N
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: b Accuracy of Levelling the Plate. The standard
coordinates will be used, in a process that is really a
type of interpolation, to find the directions of images
on the plate from a knowledge of the directions of known
star-images. It is easy to find approximately the effect
of small errors of levelling upon the accuracy of direc-
tions thus interpolated. 1In the accompanying dlagram, C
is the principal point of the camera lens, CD is vertical,
AE is the assumed horizontal position of the plate, BF is
its actual position, A and E are two star-images such that
AD = DE. Denote the error of levelling, namely the angle
BDA, by & ; denote the angle ACD by ¢ . Then A and E

C

§E
, , , F
correspond to the standard coordinates computed for an
assumed level plate. The distance from B to B! is nearly

¢ (AD) where B' is the foot of the nerpendicular from B
to AE; and thus AB' is nearly ; (AD); . Now D is the mid- -
point of AE, and differs from the mid point of BF by the
distance AB'. If D is compared with the images B and F
on the tilted plate, one will, therefore, infer, ignoring
the tilt, a direction for CD that is in error by the angle
(AB')/(CD), or 5C , nearly. .

Angular errors can therefore arise, in the direc-
tions of measured images inferred from the star-images,
equal to the angular error of the base of the plate multi-
plied by the sguare of the angular semi-field of the
plate. The semi-field for the Goerz camera is about 20°,
or one-third of a radian; consequently, the greatest error
in &n inferred direction will be about one-ninth of the
angular error of the adopted base. If the zenith is adopted
as the base, then an error of less than 1" of arc will result
from a departure of the plate of 9" from horizontal. This
limit of 9" can readily be met by careful levelling, causing

w]l-



the greatest errors arising from uncertainty of the base
to be smaller than one second of arc. :

5. Corrections for Lens Distortion and Astronomical
Refraction. The camera lens distorts, cesusing images to be
displaced radially away from or towards the base of the plate.
For any but a very poor lens, or one badly tilted in its
cell, the distortion is purely radiely and the effect of
atmospheric refraction is likewise (with the plates "based"
at the zenith) opurely radial from the base. Both effects
can therefore be considered at once, since they are similar.
Further, it is easier to consider effects and corrections to
the standard coordinates X, Y than to the plate coordinates,
measured on an engine, of photographic images. The stzndard
coordinates will be compared eventually with the plate
coordinates, and therefore it is logically immaterial whether

~one corrects the plate coordinates, or allows in the standard
coordinates, for distortion and refraction; and the latter
procedure is easier. Atmospheric refraction moves the ob-
served position of a star towards the zenith by an angle

z = u tan z S - (8)

where 2z is the zenith distance and *

983Db! L
460+t | (9)

u =

where b! is the barometer reading at the camera in inches,
and t is the temperature of the alr near the camera in
~degrees Fahrenheit. These formulae represent observed re- -
fractions correctly within a second of arc for zenith dis-
tances less than 75°, and for distances under 20° are con-
sidersbly more accurate. At Aberdeen, u is about 58" and
this value can be taken es standard, with an accuracy
sufficient for present purposes (for reasons which will be
obvious later). It is easily verified that within 20° of
the zenith, it is immaterial whether the refracted or unre-
fracted tan z is used in formulae (8), for the difference
of refraction thereby introduced is smaller than 0".0l.

- Denote by r the distance (X% + Yz)l/2 of the
pgint X, ¥ from the origin on the standard coordinate
plane. :

* Comstock, Sidereal Messenger, April, 1890.

-11-



The effect of refraction is to diminish z by ur/K, and thus
to diminish : .-

r =K tan 2
by .
“dr = - K(sec?® z) ur/X

= ~ur(l +Ar2/K2).

The first term, linear in r, amounts merely to a change of
scale and can be ignored, since the reduction procedure will
automatically allow for scale factors. We are left with the
third-order term

dr = —urB/K2 ‘ ‘(lO)

where u must be expressed in radians. with u = 58n, K = 10,
(10) is ' '

dr = -0.000002812 r° | (11)

This amounts only to 2".7 at the edge of a Goerz plate, and
changes only O".1 for a change of one inch in the barometer,
or of 17° F. It is for the preceding rezson that a constant
value of 58" may be adopted for u at the Proving Ground,
with sufficient accuracy.

The effect of distortion is similar, and can in-
volve only odd powers of r. The diagram below shows the
nodal point of the lens at 03 and a ray with an angle of
incidence of 2z, before entering the lens, znd with an angle
of Incidence z! after traversing the lens -- the difference
(z! - 2) being the anguler distortion. It is clear that r!
is an odd function of z, and hence that the linear distortion
(r* - r) must be an odd function of r involving only odd
powers of . - : .

~-12~
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For the same reason as in the case of refrzction, the terms
linear in r can be ignored, being absorbed in the scale fac-
tor, and we are left only with cubic and higher odd powers
of r, thus:

dr = A'r3 + B'r5 + ...
In combination with the cubic terms in refraction, the com-
bined effect is therefore :

dr = A"r3

+ B'r5 + een (12)
The constants A" and B' (B' will probably be '
trivial) must be found once and for all empirically, by

the methed to be described shortly, for each camera lens.
Although A" includes refraction, dependent on atmosvheric
conditions, changes in the part of A" that arises from
refraction are, as we have seen, minute and ignorable and

thus A" and B' may be regarded as constant for nrectical
purposes. The correction of the X and Y of a star, to

allow for dr given by (12), is carried out as follows.

Set X = r cos 8, Y = r sin 6, where & is an azimuthal s
angle (on the standard coordinzte plane) that is not '
altered by refraction and distortion. Then

- dX = cos 6 dr; dY = sin & dr

and since
r? = X® + y?
one has'
(dX) g = X A" (X® + Y?) [1 + %% (X2 + y2)1 |
L | (X111)
(dY)d =Y A" (X® + Y3) [1 + %% (X2 + yz)J

-13-



These equations enable the computer readily to correct the
values of X and Y already computed for each star, thus:

Xt =X + (dx)d ()
Y' =Y + (dY)d

where the X' and the Y' are standard coordinates, with
refraction and distortion allowed for. '

6. Determination of the Constants A" and B' (Distor-
tion and Stellsr Refraction. To determine A" and B! for a
camera, it is to be very carefully levelled sand then a star-
photograph is to be taken. Compute the uncorrected standard
coordinates, X and Y, for each star. A "star" can, of course,
be a brezk in a star-trail, or the average of a number of
. breaks in the same trail. By the method later to be described,
find by least squares the plate constants a, b, ¢, d, e, f in
the equations

a+bx+cy=X
d¥*ex+ f y=Y

where X and y are plate coordinates. Then find the constants
A" and Bt from the residuzls by least sguares, using the ob-
servational eguations '

C'X + A" (X® + ¥Y®) + B'X (X® + ¥®)%= a + bx + ¢y - X
C'Y + A"Y (X + Y2) + B'Y (X% + Y?)?=d + ex + fy - ¥

The unknowns are C', A", and B'; where C', although it must

be included in the least squares solution, is of no interest
when found. The stars should cover the plate as fully and as
uniformly as possible, for best results, and the present deter-
mination need be carried out only once and for all, for each
camera. : o

: 7. Determination of the Plate Constants. The equations

a + bx + cy = X!
(xv)
d + ex + fy = Y!

relate the measured plate coordinates, x and y, to the correc-
ted standard coordinates X! and Y'. The eqguations (XV) allow

-14-




for scale factor, for rotation of tie plate in the measuring
engine, for lack of perpendicularity of the ways of the
measuring engine, for a difference between the scales of the
x and y screws, and for arbitrary zero-points of x and of y.
Three stars will determine the plate constants a, b, ¢, d, e,
and Iy more than three stars will overdetermine the plate
constants and a least squares solution should be made. The
solution with n stars, 1, 2, 3, ... n, proceeds as follows.
Let X be the mean of the x's, y be the mean of the y's, and

Xt = x - X
' _ (XVI)
yt=y-yvy.

Then the observational eguations are

il
o

(a + bx + cy) + bxt; + eyty
> + fv - bl = t
(d + ex + fy) + ext, + Ty', =Yty

and the normal equations (the unknowns being (a + bx + ¢y = at),
b, ¢, (@ + ex + f¥ = 4d'), e, end f) are

a' b c =
n O 0 Xt
x'? xryt . x!'X¢

ylz | y'XY

with similar equatlons in Y' for dt, e, and f. To soclve

these, compute

[x1?] [Wz] - [X'y':‘z
1 {X'i [Y'Z] “3"1[”3"]}/& (X\?ID
oo =y [x07] -y [owr ]}

and check these quantities by the equations

i

o
i
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Then | |

a = (1/n) [X'£1 - bX - cy d = (1/n) [yté] - ex - fy

b - [51X'J | | | e = [51Y'ﬂ | | | (XIX)
c = =

O N

and when only three stars are used, equations (XV) may be
used for final checks and will be satisfied exactly. With
more than three stars, equations (XIX) must be repeated to
provide a check; another check is that different plates

will have nearly the same plate constants unless the cameras
have been disturbed between exposures.

When there are only three stars, the preceding
solution holds, but it is quicker merely to solve the six
simultaneous equations (¥V) for a, b, ¢, d, e, and f by
successive eliminations. The equations group into two sets
of three. " :

8. Determining the Standard Coordinates of the fLerial
Point. One has merely to insert in equation (XV) the plate
coordinates of any aerizl point in order to find its stand-
ard coordinates, X' and ¥'. These are to be corrected by
applying dX and DY given by (XIII), thus:

X =Xt - (dX)d (xx)

Yr - (dY) g4

where (XIII) may bé entered, to sufficient accuracy, with

X' and Y!' instead of X, Y. These standard coordinztes have
next to be corrected for the difference between astronomical
refraction, and the smaller refraction that affects the ray
to the airplane immersed in the atmosphere.

Y

-16-
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9. The Refraction Affecting the ferial Point. If the
aerial point were at infinite height, its refraction would be
astronomical. In the dzagramQ L Bo I

O is the camera; Z is the zenithy; OPI is the ray from the
aerial point; P 1s the aerial point; 0¢ is the tangent to
the ray at 03 zo is the zenith distance of the ray at the
camera; zp 1s the zenith distance of the straight line OP;
Ze 1s the zenith distance of the ray 0PI extended to
infinity; h is altitude above the camera. The normal dis-
tance from 0@ to the ray OPI at the distance g from O is y.
Now if z is the variable zenith distance along the ray and
if , 1is the index of refraction of air, one has

dz _ fu o
ds  ~ sin z udh . (21)
or since
dn _
35 = COS 2,
one has
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whence
sin z = ( po/u ) sin z '

where ko is the index of refraction of the air near the
camera. '

]

Since z - z, = Az is small, one has

T T ‘
-2 tan zZ,

Az m

tl

whence

’y_=  jﬁ z ds

o]

= tan Z, sec Z, SYkgvu dh
V)

and

Zy, — 2 'y/h sec Zo

" h .
. _]; L o~k
_.tan_z.p n gA dh.

.

o
Wé have
w =1 + ( by - 1) p/pO

*i"fwhere p is the air density, so that

L - (0/0))  an.
1+(u ,-1)e/p,

iy - = (0 -
h = %, (}5 - 1) tan zZ, %

‘0(?35; |

~18-
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~«ne denominator is closely enough equal to unity, since
bo = 1 is small; and thus, very nearly,

, o |
Zy, - z, = (4, - 1) tan Zg [j - %f:vf (p/po) d}. (26)

< 0

The astronomical refraction is.z_ - z_, given by setting
Y o .
h = o in (26):

Zop= 2y = (Lb - 1) tan Zo s

which agrees with (8) if u = ug - 1 is taken as 58" of arc,
or as 0.0002812 radians. Thus the difference between the
astronomical refraction and the actual is

[ 2]

2o~ 2y = (1/1000) tan Z, f(h) | : | (27)

where

|

h .
£(n) = 0.2812 & § (o/p.) an.
o ]

The value of £(h) up to 130,000 feet has been com-
puted from the annusl means of the observed values of p/p_,
obtained by sounding balloons, and published by Humphreys:*

h £(h) h .  f(h) h f(h
(ft) . (ft) (£t) ( :
0 .281 45000 142 90000 .083
5000 .258° 50000 .135 95000 .079
10000 .239 . 55000 JA26 0 100000 .075
15000 .222 60000 118 105000 .072
20000 - 206 65000 .110 110000 .069
25000 191 70000 104 115000 066
30000 .178 75000 .098 120000 .063
35000 166 20000 .093 . 125000 061

40000 155 85000 : .087 130000 .059

* W. J. Humphreys, Physics of the Air, Franklin Institute, 1920.
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The above values aley'to a barometer reading of 30 inches,
and a temperature of 48° F, at the camera. In accordance
witn equatlon (9), they should be lowered by 1% for each 5° F
by which the temperature exceeds L8° F, and increased by 1%
for each O. 3 inches by which the pressure exceeds 30 1nches.
The altimeter will furnish values of h accurate enough for
finding f(h) by means of the preceding table and corrections.

By the argument of section 5, we allow for the
difference of refractions by applying the correction dr,
where

1000 dr = -K(1 + r?/K?) r f(h)/K

or by applying the corrections (dX),, (dY)r, where

i

1000 (dx), = f£(h) X [} + (X% + Yz)/KEJ

(XXVIII)

It

1000 (dY), = £(h) ¥ [i e s yz)/K%]

to the X and Y of the aerial point, in order to find Xm, ym:

Xu = i - (ax),
(XXIX)

i

Y o=y - (dy) .

10. The Direction Ratios to serisl Points. With respect
to the set of axes X, Y, Z, defined in section 3 (¥ to the
east, Y to the north, and Z to the zenith), having an origin
at either camera: The geometrical coordinates of the inter-
section, of the standard coordinate plane with the straight
line from the camera to the aerial point, are simply X", YY", K.
Hence the direction ratios of the line from the camrera to the
aerial poinb are merely

X" s oymo: K. o o (33)

It will be henceforth necessary to diStinguish between
the two cameras, which will be denoted as camera 1 and camera 2.
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The ratios for camera 1 will be denoted by X®"; : ¥"p : K

-and those for camera 2 by X"p : ¥", : K. It will be neces-

sary to transform these direction ratios to a standard
terrestrial system of reference. Because of the curvature
of the earth, the X, Y, Z systems of the two cameras will
not be parallel to each other. If the standard system of
reference were chosen to coincide with the X, Y, Z system
of one of the cameres, some computation would be saved;
but then the direction of gravity over the bomb-trajectory
would not ccincide with the standard z-direction. We dis-
cuss the transformations as though the standard reference
system differed from the X, Y, Z systems of both camerass
if it is identical with either of the latter then the

following results and procedure will still hold.

Let P, denote the origin, at latitude ¢4, of a
standard terres%rial reference system, & ,n , ‘{. The
latitudes of cameras 1 and 2 are denoted by ¢1 and vy, and
their longitudes measured to the west from P, are denoted
byae and ¢ . Xo, Yo, Zo are a set of axes through P, as
origin, such that Z, is vertical, Y, is to the north, and
Xo is to the east. X3, Y1, Z1 and %2, Yo, Zo are similar
sets of axes through cameras 1 and 27as Crigins; these

three sets of axes are of course not parallel to each other.
The standard reference system differs from the Xo, Yo, Zo
system through a rotation about the Z_,-axis, which coincides

with the € -axis. Then -axis has an azimuth at P, of A,

measured from north to east; the & -axis has an azimuth at P,

of ( A+ 90°). We also mzke use in this discussion of the

hour-angle declination exes x'g, ¥'g, 2'o3 with P, as origin,

with x', lying in the equator and meridan, y'y polnting to
the east, and z', pointing to the north celestial pole. '
x'1, ¥y'1, 2'1 and x'p, y'o, 2z's are similar axes with ori=
gins at cameras 1 and 2, respectively. '

It is necessary to find the cosines of the angles
between the £ , n , ¢ axes and the X1, Y1, 2] axes; and
between the £ , n, ¢ axes and the X2, Yo, Zp axes. The
cosines of the angles between the Xy and the & systems are

Xo Yo Zo
a = cos \|a = ~-sin A la =0

3 11 N S ) - 13
n 8,7 = sink 8,5, = COS A asy = 0
¢ a31 =0 a32 =0 a33 =1
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The cosines

relating the X  system to the X'

r
X0

A

LA

o 0
Xo | Py =0 D=1 |byy =0
Y, b21 = -sin ¢ bzé =0 b23 =.cos 9q
| Z b31 = Cos @, b32 ; 0 533 = sin g

the cosines

relating the x'y system to the x!

Ey'l

0

x'o Cyp = €OS & | Cyy = sin’a1 Cy13 = 0
y'o Chy = -sind Chp = COS @ 023 =0
1 = = =
A Caq 0 Cqn 0 Csq 1
and the scheme relating‘the systems x', and X; is

X5 Y
X'y dll = Q d12 = -sin 9y d13 = COS @
v'1 dpy =1 |dpp =0 dp3 = 0
z'y dBl =0 d32 = COS g _d33 = sin @

-22-
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From these we compute in succession the arrays

.x'o - y'o Z'o
2 €11 €12 €13
7 €2 €22 L €p4
¢ €21 €22 €23
where
3
e13 = = %y byy o
k=1 -
x'l I y'l z'l
. £11 10 £y
n £21 Y fag
¢ f31 f32 T35
where
5
f15° = ey Crjy
k=1
and
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£ 811 812 €13
" €21 €22 €23
¢ €a3 €32 €33
where
3
813 = > Ly Ay .
k=1 .

The preceding computations are easily performed if actual
numbers are inserted in the cells, and lead to the numeri-
cal array, g5+, relating the Xy, Y, 771 system to the

standard sys%%m. Then the num%ers end headings should be

xXn oy +
e €11 ey Ke13
. B2 20 Kea3
c a1 | . B32 833

written down on a heavy card, headed "Camera 1Y,

In precisely the same way, replacing camera 1
by camera 2, and thus @1 by ¢, and o by o. , one obtains
v N s . v 2 .
the scheme, which should be written down nimerically on a
heavy card, headed "Camera 2m, '

Xn, ' v, +

¢ ny, onp Kh, ,
n o hyy hy, Khysy
r 3 hsy Khys i
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: ‘ The transformation of the direction ratios
X"y @ ¥"; K to ‘the system of standard terrestrlal axes
E7, n , ¢ is merely

Al = X"l gll + Y“l 812 + (KgIB)

By = X" 81 ¥V &5 + (Kepy) (X3XT)

Cp = X"y 833 + ¥y g3+ (Kes3)

where A} : By : C; are the direction ratios, of the
straight line from camera 1 to the zerial point, expressed
in the ¢ , sy t system. Likewise, the direction ratios
Xho t Y¥s from camera 2 are transformed to the ratios
Aot By ¢ Cp in the £, n , { system by the equations

A, = X", hl1 + Y"2 hl2 + (KhlB)
B, = X", h,y + Y, h22 + (Kh23) (XXXIT)
C, = Xn, h31 +Y", h32 + (Kh33).

Using the coefficients written on the cards, a good com- _
puter should be able to transform a single set of direc- .
tion ratios X" : ¥ ¢t K in little more than one minute;
the coeff101ents, which depend only on the camera posi-
tlons and on the standard reference system that is used,

are mere constants.

If the origin Py of the reference system £, 7,
¢ coincides with either camera, and if the 7 -axis runs
exactly north from that camera, then no transformation is
necessary of the ratios X" : Y" : K obtained from that
camera, and one has for that camera A = X" : B =YY" : C = K.
Thus some saving of computation-time can result from such a
choice of a standard reference system.,

11. Thé Coordinates of the Aerizl Point. Denote the

Es» n s ¢ coordinates of camera 1 by 215 bl’ 13 and those
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of camera 2 by &p, by, cp. Denote the direction ratios of
the rays from the two cameras to the aerial point, in the
X, ¥y, z system, by A] : By ¢ C; and Ap : Bp ¢ Cp &s in
section 10. Then the coordinates x, y, z of the zerizl
point are given by the equations

E=a +A D=a,+tAym

L = c;y +Cy p= c, + Cs m:

(IXXIII)

where p and Q are found by solving the observational equations,

by least squares,

Compute
F = 4% +B% +C%;
G = A22 + B22 +'022;

I = (ag-ag) Ay + (by=by) By + (cy-¢1) Cpj5 1
I = (agay) Ay + (by=by) By + (ep=cq) Cpj

K = FG - H°.

26

(34)

(300XV)



[

Then j ) - - -

(CT - H3)/K

*6
!

m = (HAI - FJ)/K  

and these computations should be checked by computing .
residuzls of the three observational equations, and
seeing that the sum of their preoducts with the coeffi-
cients of p should vanish, and that the sum of their
products with the coefficients of m should also vanish,
This checks the least sguares solution. Then from
(XXXIII), one finds two values of £, of n , and of ¢ 3}
the agreement indicates the accuracy of the whole work,
and for final values the averages of the two estimates
of each quantity, g , n , and g , should be taken.

This completes the descrintion of the method
of finding the position of an aerial point, from photo-
graphs taken from two vertical cameras, by the use of
star-images. We can call the preceding method the "long
method". . ’ _ C

12. Summary of the "Long Method'"; Directions for
Computers; Estimated Comoutation-Times. The preceding
exposition has been long, but the metnod is fairly
rapid. It may be summarized as follows., At the ocutset,
a study should be made as described in section 6 to
find the distortion and third-order refraction terms for
the two cameras. At the outset, also, when the piers
are set out, one should prepare the two cards, each with
nine constants, described in section 10. Then the pro-.
cedure with two plates, one from each camera, in a parti-
cular range-bombing program is as follows: Measure the
plate coordinates, (x, v), of each comparison star and
aerial point on both plates. While this is being done,
compute the direction cosines Ly, Mg, No of the comparison
stars by equations (I) and (III? -~ unless they are al-
ready available from the computations of a previous range
bombing. Correct these for nutation, etc., by ecuztions
(IV) and compute their standard coordinates for each

-27-
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camera by equations (VI) and (VII). Apply the checks
described in the text, at all stages. Apply the correc-
tions given by equations (XIII) to all standard coordi-
nates, by eaquations (XIV). Determine the plate constants
from the comparison stars, using equations (XVI) through
(XIX). Determine the standard coordinates of the aerilal
points by equations (XV), correct them by eguations (XX)
and (XXIX), and compute their direction ratios by equations
(30XI) and (XXXII), using the two cards. Finally compute
the space coordinates of the aerial points by using
equations (XXXV), (XXXVI), and (XXXIII). The writer esti-
mates, very roughly, a computation-time of from four to
eight hours for a single computer when there are three
comparison stars, and three aerial points to locate.

With a suitable arrangement of the work, three computers
should accomplish it in about two to four hours. These
times are for exverienced computers; mediocre ones would
probably take longer. .

13. Ranid Method Without Using Stars. If the cameras
are very rigidly mounted on well-settled piers (protected
further from diurnal or other rapid temperature changes,
and not moving with the tides), it msy prove possible to
avoid the employment of star-images on some of the plates.
For this "short methed" to be possible, fiducial msrks must
be impressed on the pnlates by marking devices tnat are
absolutely fixed with respect to the lenses and piers.
Further, the lens of each camera must be absolutely free -
from rattle in its cell, and the camerea itself must be of
the firmest and most rigid construction. These require- LT
ments are.unnecessary when star images are used, as in
the "long method", ‘

Using stars as already described, it is necessary
to find the plate constants a, b, ¢, d, e, and f (as ex-
plained in paragraph 7) for some plate which we shall call I
the “standard" plate, which need not photograph the aerisl:
point. Coordinates of points on the standard plate will
be written thus: x, y. Then the plate constants relate
x and y to directlons in space. Suppose now that we
measure the coordinates x, y for a number of fiducial
marks impressed on the standard plate by the camera, and
then tske another plate, (the "observing" plate), on which
pne same marks are impressed, without disturbing the camera
in any way between exposures. We can denote coordinates
on the observing plate by (x', y') and* we can measure the

¥ The plate coordinates (x!', y') are not the space coordinates
(x', y', 2z') of Section 3.
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coordinates (x! 1) of the fiducial merks and of the
aergal pointg on {hé observing plate. WNo stars need
appear on the observing plate. Then 1t is obvious

that if there are three or more fiducial merks on

both plates, we can find from the coordinates x, ¥y and
x!', y' of the fiducial marks, the six coefficients in
two linear equations, like the equations (XV), which
relste the coordinates x', y' to the coordinates x, y.
Such relations will automatically allow for changes

of scale in the measuring engine, for lack of perpen-
dicularity of the ways, for rotations of the plates in
the measuring engine, and for differences between the
scales of the two screws of the engine., They will also
automatically allow for thermal expansions of the plates,
and eof the camera. Thus from the x', y' of an aerial
point on the observing plate, we can compute its x and y
by the linear relations so found, and thence deduce the

-directions X" : Y% : K of the line to the aerial point,

and thence finally obtain the space coordinates £ ,n , ¢
of the aerial noint, just as though the aerisl point had
been photographed on the standard plate itself. Care
must be tekern to allow for differences between the refrac-
tions influencing the two plates, if they are taken on
different dayss; but the procedure is straightforward and
1t is left to the reader to develop the formulae appli-
cable to the case of three or more fiducial marks.
Unfortunately, with the Goerz caneras of the Aberdeen
Proving Ground, there are only two fiducial marks on
each camera. We shall discuss this case with care.

Let us inquire as to what differences there can
be between the standard plate and the observing plate,
apart from changes of refraction, when the camers has not
been disturbed., The x''s and y''s can differ from the
x's and y's through changes in temperature, either at the
Times of measurement or at the times of exposure, or both.
Changes of temperature, whether affecting the nlates through
their glass, or through swelling or contracting of the
camera, or through changes in the pitches of the measuring
Screws, can at most amount to a simple change in scale.
Thus we should expect the two plates to differ in scale.
If the plates are measured on different engines, then the
pitches of the two x-screws can differ in ratio from tne
pitches of the two y-screws. This must be avoided, when
only two fiducial marks are available, by using the same
engine for measuring both plates. - Further, we must take
care in the present "short" method not to use an engine
which has only one screw, and which depends for measure-
ments of x and y upon a rotation of the plate through 90¢°



between measuring the x's and meaduring the y's. It is
essential to use an engine with two screws, very nearly
at right angles. With a single-screw engine the angle
between the axes of measurement will not only never be
90°, but it will very from plate to plate according to
the accuracy with which the x and y dispositions can be
reproduced. While that has no evil.effect when there

are three fiducial marks, it intrcduces insuperable
difficulties when there are but two marks. With a two-
screw engine, the zngle between the ways may not be 90°
exactly, and in general it will not be 90°3 but wnhatever
the angie is, 1t will remain constant from plate to

plate unless the engine is subjected to abuse. Moreover,
the ratios between the scales of the two screws will re-
main constant from plate to plate, since the screws are
always made of the same metal. Another source of differ-
ence between (x', y') and (x, y) arises from the inevit-
able small differences between the orientations of the
plates in the measuring engine when the plates are
megsured. These cannot be entirely avoided. Finally,
the x''s and y''s cen differ from the x's and y's through
the Two systems! having different zero-points.” We are
left, therefore, when all precautions have been taken,
with the effects of differences of scale, of different
orientations in the measuring engine, and of different
zero-points, We discuss the reletion between x', y!

and x, y in the following section, and show how the
effects of the preceding differences can be automatically
eliminated.

14 Short'Method - The Reiaﬁion of the Stendard Plate

to the Observing Plate. In the diagram below, we have
drawn the x' and y' axes, and also a set of orthogonal
axes (X"', y"!') such that x"! is parallel to x'. We make
t@e origins coincide here-and in the following transforma-
tions, since zero-point constants are easily inserted
later on. One unit of x!' will be bg units of x"! or gy,
and the angle » measures the lack of rerpendicularity of
the ways of the engine, x!' and y!'. A unit of the y' screw
1s eg units of xmt or ywr, -~

ro '-'y“ :
yﬂ'
b

___..__7 _('x‘,y')

ZSa

Iy

/

4 X"',X'

-30-




Then
e =— !t 4+ ¢ v?! si
X | bsx B : inx
yutr = csy' cos#

The total change of scale and the effect of the different
orientations of the plates in the engine, can be repre-
sented by a transformation from (x"', y"!) to (x", y") where
the latter coordinates differ from the former through a
rotation w and through a scale factor s. Thus

X" = sx"! cos w -~ sy"! sin o
y" = sxMt sin ® + sy"!t cos w.

Finally, the measurement of the standard plate in the
eng1ne corresponds to the diagram

‘x" ' X

where the relation of (x", y") to (x, y) is the same as
the relation of (xm', ynvj to (x!, ¥v'). Thus

X = —%— (x" - y" tan x)
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It will be noticed that we have assumed the same relative

itcl of the x and screws for the two plates, and the
géggnziror of the wayz x#y and that changes of scdle from
one plate to the other have been absorbeq in the conspant
s. Combining the preceding linear equatlions, and adding
Zero-point constants, one finds that in general

- c_s
s .
x = + s(cos o - sin o tan ») x'-—— sin o sec # . y'
- s

bs | - , o
o+ —%— sin ® sec ¥ . x' + s{cos w + sin o tan x) y'

which can be written

»
]

o c
[ + Ax!' +Qy' - [+A-tan w tan ¥ . x! +32(l—5§) Y]
. 5

' : b _
R - X' + AY' + + Q(l'Ei)fX' +A tén o tan x . y!

4
Il

where A has been written for s cos ®w and € has been
written for -s sin o sec. x.

fince » is a very small angle, and w is smell,
while the scale factors s, bg, and cg are all very close
to unity, it follows that A is nearly unity while @ is
approximately equal to =sin w. The ratios of scales bs/cS
is very close to unity for any well-made enginej; certainly
not differing from unity by more than one part in 10,000.
The angle » for a well-made engine should be less than one
minute, so tan » is less than 0.0002. If (by careful aline-
ment of the observing plate in the measuring engine so that
X, ¥y and x', y!'! are nearly the same for both fiducizl points)

ve can keeo o less than 1°, then the coefficients of x' and y!
in the square bracketed selond-order terms a%e all smeller v
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‘than 0.000005 and are ignorable, We are then left with

T +p X'+ gyt =x
o (XXXVII)
n -Q@ Xt+ Ayt =y

with an accuracy sufficient to yileld directions that will
be correct to better than a second of arc. Here [} , A ,
2 , @I are unknown constants to be determined from the
measured coordinates (x, y) end (x', y!') of the fiducial
marks., It is easy to aline both plates, in the measuring
engine, similarly to within one degree of angle. We may
calll , A , Q, H the "observing constantsw.

15. Short Method -~ Flndlng the Observ1ng Constants.
It is readily found that

b= [y -y =)+ Gy - v - | e

O
H

[(V' - V'ZZ) (Xl - X2) - (yl Y2) (X' - X'Z):\/E F o
(;\}Q’VIII)

*

I o=xy - Ax'y - QY'Y

s

Il = yl + QX'I - Ay‘l

AN

where E o o 3
- E ='w(x'l "' X'z)z + (Y'l - y'2)2.

The observing constunts, F ,4& ,  ,0 may be checked

by the equations (XXXVII).  Here (x'1, y'1) and x!2, y12)
are the measured coordinates of the fiducial marks 1 and 2,
respectively, on the observing plate; and (x1, v1) and

(x2, y2) are the measured coordinates of tne fiducial marks
on the standard plate. As has been pointed out, both plates
must be measured in the same two-screw measuring engine,
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‘after having been inserted in nearly parallel orientations.
The observing constants are, of course, relative to the
particular observing plate, and particular standard plate.
It is entirely proper to use, as a standard plate, the
average of two or more star-plates taken at nearly the sane
time; then one has to use (later)the average of the air
temperatures and pressures when correcting for refraction
on the standard plate. :

16, ‘Short Method - The Direction Ratios to Aerial
Points. Let the plate coordinates of an aerial point be
(x', ¥y') as measured on the observing plate. Insert these
values in equations (XXXVII) and thereby obtain (x, y).

Now insert (x, y) in the left-hand members of equations
(XV), involving the plate constants of the standard plate,
and thereby find the standard coordinates (X', Y'), of
the aerial point. The criginal values (x', y!') contained
the effects of refrazction of the aerial point, and lens
distortion. The refraction in cuestion is that aporopriate
to the date of the observing plate. It is characteristic
of the transformations (XV) that thev automatically take
out the first order astronomical refraction for the date
of the standard plate. Therefore, the standard coordinates
(X', ¥') contain the refraction of the serial point, dis-
tortion, and minus the first order astronomical refraction
of the standard plate. If we subtract from X¥ and Y' the
small quantities (dX)g and (dY)g given by (XIII) entering
these equations with ?X', Y'), we are left with standard
coordinates free from distortion, and affected by minus
. the full astreonomical refrsction of the standard plate,
and plus the refraction of the aerial point on the date
of the observing plate. If we now apply the difference
astronomical refraction on date of standard plate) minus
astronomical refraction on date of observing plate) and
apply further the difference (astronomical refraction)
minus (refraction to height h) appropriate to the date of
the observing plate, we shall be left with standard coor-
dinates (X", Y") fully corrected for distortion and refrac-
tion and comparable in all respects with the standard
coordinates (X", Y") furnished by equations (XXIX) of the
long method. The difference between the astronomical refrac-
tions on the two dates i1s obtained readily from equations
(8) and (9), and thus we have for any aerial point
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Xn =X - (a4 + (v - ust) Xt - (ax),
| | (XXXI%)
Y= ¥ oo (AY) 4 + (ugy - ugy) YU - (dY),

where

u = 0.004766 bt
L60 + t

and where ugp refers to the observing plate, ugt to the
standard plate. Here b! is the ailr pressure at the
camera in inches of mercury, and t is the air temperature
in degrees Fahrenheit.

Thus the short procedure goes as follows: In-
sert the plate coordinates (x!', y!') of the aerial point,
as measured on the observing plate, into eguations (XXXVII)
and thus obtain (x, y). Insert (x, y) into the left-hand
members of eqguations (XV) aporopriate to the observing
plate, and thus find (X', ¥'). Correct (X', Y') by
equations (¥X¥XIX) to find (XY, ¥Y"). In ecuations (XXXIX),
find (d¥)q and (dY)4 from equations (XIII), ignoring the
difference between (X, Y) and (X', ¥Y'), and similarly
find (dX), end (dY), from equastions (XXXVIII) and the
assoclated table, ' .

17. Short Method - The Coordinstes of the Aerizl
Point. The quantities (X", Y") just obtained are precisely
comparable to the same quantities in the long method, and
from there on the reduction goes just as in the long
method, described in sections 10 and 11.

18. Summary of the "Short" Methods; Directions for
Computers; Estimated Comoutation-Times. Standard plates
containing star-images must nave been previously obtained
from both cameras; then the cameras, without being in any
way disturbed, photograph the aerial points on observing
plates. The comparison star-images and fiducial marks
must be measured con the standaerd platesj; and the plate
constants must be obtained as in the "long" method for
the standard plates. The fiducial marks and the images
of the aerial points are measured on the observing plates,
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by the use of the same engine that was used to measure

the standard plates. The standard plates and observing
plates must be inserted in the measuring engine (which

must be of the two-screw type) approximetely parallel

to each other. Find the observing constants by equations
(XXXVIII), a2nd then by ecuations (XXXVII), compute stand- .
ard plate coordinates (x, y) for each aerial point. o
Compute standard coordinates (X!, Y') by equations (XV). §
Correct these by eguations (¥XXIX), obtaining the correc-
ted standard coordinates (X", Y") of the aerial points.

By formulee (XXXI) and (¥XXXII), compute the direction
ratios, using the two cards. Finally compute the space
coordinates g , of the aerial points by using

n o, & - -
~equations (X¥XV), (HKVI), and (XXXIII). The writer

estimates very roughly a computation-time of from three

to four hours for a single computer when there are three
aerial points to locate. With suitable division of the

work, three computers should sccomplish it in zbout

one to two hours. These times are for experienced com-

puters; mediocre ones or beginners would take longer.

In connection with these estimates, thu standard plates

are supposed already to have been reduced. .

T e dtme

‘'T. E. Sterne,
Captein, Ordnance Dept.
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